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Let X be a compact Hausdorff space. Let :§' be a subset of C(X) with the
betweenness property [2 j, Let u and v be continuous into the extended real
line, u < v. We consider uniqueness of best Chebyshev approximations under
the constraint on approximations G that

This approximation problem was first considered in [3].

DEFINITION. .0/' has zero-sign compatibility if, for any two distinct
elements G, H, any closed set Z of zeros of G - H, and any continuous
function s taking the values +1 or -Ion Z, there exists FE .0/' such that

sgn(F(x) - G(x)) = s(x), xEZ.

Zero-sign compatibility is necessary for uniqueness 10 ordinary best
Chebyshev approximation and sufficient for uniqueness in ordinary best
Chebyshev approximation if :§ has the betweenness property [2].

DEFINITION. A normal topological space in which each closed set is a
countable intersection of open sets is called perfectly normal.

The perfectly normal spaces include all subsets of finite dimensional
Euclidean space.

THEOREM. Let X be perfectly normal. If .0/' has zero-sign compatibility,
best restricted range approximations are unique for fin lu, v].

Proof Suppose H and I are distinct best approximations to f By
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arguments of Lemmas 3, 5 of 121, by taking G in the A-set of H, I for any j.

in (0, I), we get G also best and G, H agree on M(G), where

M(G) = jx: If(x) - G(x)1 = Ilf- Gil f U lx: u(x) = G(xn

U IX: v(x) = G(x)f·

Define

s(x) = sgn(f(x) - G(x))

= + 1

=-1

If(x) - G(x)1 = Ilf- Gil
G(x) = u(x)

G(x) = v(x).

No inconsistency can arise in the above definition. Suppose, for example, we
had f(x) - G(x) = -Ilf- Gil <° and G(x) = u(x), then f(x) < u(x) and
fE [u,v].

Now x such that s(x) = -1 and x such that s(x) = +I form disjoint closed
sets. By a result of Dugundji [I, p. 148], there is a continuous extension of s
to X such that Is(x)1 < 1 for all other x. By the definition of zero-sign
compatibility, there is FE :ff with

sgn(F(x) - G(x)) = s(x)

But this contradicts Theorem 2 of [31.

x E M(G).

COROLLARY. Let X be perfectly normal. If best approximations are
unique in ordinary Chebyshev approximation, they are unique in the
restricted rang~ problem if f E [u, v].

In the case of one-sided approximation from above, with u = J, v = +00,

an explicit extension for s is available and we do not need to assume perfect
normality. Choose

s(x) = I - 2If(x) - G(x)I/llf- Gil

then -I ~ s ~ 1 with equality only if G(x) - f(x) = Ilf - Gil or G(x) =j(x).
One-sided approximation from below is handled similarly.
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